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COMPUTATION AND USES OF THE SEMIDISCRETE MATRIX

DECOMPOSITION

Tamara G. Kolda and Dianne P. O'Leary

Abstract

We derive algorithms for computing a semidiscrete approximation to a matrix in the Frobe-

nius and weighted norms. The approximation is formed as a weighted sum of outer products

of vectors whose elements are �1 or 0, so the storage required by the approximation is quite

small. We also present a related algorithm for approximation of a tensor. Applications of

the algorithms are presented to data compression, �ltering, and information retrieval; and

software is provided in C and in Matlab.

1. Introduction

A semidiscrete decomposition (SDD) approximates a matrix as a weighted sum of outer prod-

ucts formed by vectors with entries constrained to be in the set S = f�1; 0; 1g. O'Leary and

Peleg [1983] introduced the SDD in the context of image compression, and Kolda and O'Leary

[1998, 1999] used the SDD for latent semantic indexing (LSI) in information retrieval; these

applications are discussed in x5.

The primary advantage of the SDD over other types of matrix approximations such as the

truncated singular value decomposition (SVD) is that, as we will demonstrate with numerical

examples in x7, it typically provides a more accurate approximation for far less storage.

We describe the SDD, how to calculate it, and its properties in x2. The weighted and tensor

SDDs are presented in x3 and x4, respectively.

A storage-e�cient implementation for the SDD is presented in x6. Numerical results with

our software are presented in x7.

2. The SDD

An SDD of an m� n matrix A is a decomposition of the form

Ak =
h
x1 x2 � � � xk

i
2
666664

d1 0 � � � 0

0 d2 � � � 0
...

...
. . .

...

0 0 � � � dk

3
777775

2
666664

yT1

yT2
...

yTk

3
777775 =

kX
i=1

dixiy
T
i :

| {z }
Xk

| {z }
Dk

| {z }
Y T
k

Here each xi is an m-vector with entries from the set S = f�1; 0; 1g, each yi is an n-vector

with entries from the set S, and each di is a positive scalar. We call this a k-term SDD.

Although every matrix can be expressed as an mn-term SDD

A =

mX
i=1

nX
j=1

aijeie
T
j ;
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where ek is the k-th unit vector, the usefulness of the SDD is in developing approximations

that have far fewer terms.

Since the storage requirement for a k-term SDD is k 
oating point numbers plus k(m + n)

entries from S, it is inexpensive to store quite a large number of terms. For example, for a

dense, single precision matrix of size 10; 000� 10; 000, almost 80; 000 SDD terms can be stored

in the space of the original data, and almost 160; 000 terms can be stored for a double precision

matrix of the same size.

2.1. Computing an SDD

An SDD approximation can be formed iteratively via a greedy algorithm. Let Ak denote the

k-term approximation (A0 � 0). Let Rk be the residual at the kth step; that is, Rk = A�Ak�1.

Then the optimal choice of the next triplet (dk ; xk; yk) is the solution to the subproblem

min Fk(d; x; y) � kRk � dxyT k2F s.t. x 2 Sm; y 2 Sn; d > 0: (1)

This is a mixed integer programming problem. Note that if the integer constraints were replaced

by kxk = 1 and kyk = 1, the solution would be the rank-1 SVD approximation to Rk.

We can simplify the optimization problem slightly as follows.

Theorem 1. [O'Leary and Peleg 1983] Solving the mixed integer program (1) is equivalent to

solving the integer program

max ~Fk(x; y) � max
(xTRky)

2

kxk22kyk
2
2

s.t. x 2 Sm; y 2 Sn: (2)

Proof. We can eliminate d as follows. First rewrite Fk(d; x; y) as

Fk(d; x; y) = kRkk
2
F � 2dxTRky + d2kxk22kyk

2
2: (3)

At the optimal solution, @Fk=@d = 0, so the optimal value of d is given by

d� =
xTRky

kxk22kyk
2
2

:

Substituting d� in (3) yields

Fk(d
�; x; y) = kRkk

2
F �

(xTRky)
2

kxk22kyk
2
2

: (4)

Thus solving (1) is equivalent to solving (2).

The integer program (2) has 3(m+n) feasible points, so the cost of an exhaustive search for

the optimal solution grows exponentially with m and n. Rather than doing this, we use an

alternating algorithm to generate an approximate solution to the subproblem. First y is �xed

and (2) is solved for x, then that x is �xed and (2) is solved for y. The process is iterated.

Solving (2) can be done exactly when either x or y is �xed. If y is �xed, then (2) becomes

max
(xT s)2

kxk22
s.t. x 2 Sm; (5)

where s = Rky=kyk
2
2. The solution to this problem can be easily computed as follows.

Theorem 2. [O'Leary and Peleg 1983] If the solution to the integer program (5) has exactly
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J nonzeros, then the solution is

xij =

�
sign(sij ) if 1 � j � J

0 if J + 1 � j � m
;

where the elements of s in sorted order are

jsi1 j � jsi2 j � � � � � jsim j:

Proof. See O'Leary and Peleg [1983]. This result is also a special case of Theorem 8.

Thus there are only m possible x-vectors to check to determine the optimal solution for (5).

Two types of stopping criteria can be used in the alternating algorithm for the solution of

(2). Since from (4)

kRk+1k
2
F = kRkk

2
F �

(xTkRkyk)
2

kxkk22kykk
2
2

; (6)

the inner iteration can be stopped when

� �
(xTRky)

2

kxk22kyk
2
2

;

becomes nearly constant. Alternatively, a maximum number of inner iterations can be speci�ed.

These two stopping criteria can be used in conjunction.

As long as the inner iterations are terminated whenever a �xed point is encountered, the

inner loop is guaranteed to be �nite since no iteration makes the residual larger and there are

only a �nite number of possible vectors x and y.

Figure 1 shows the algorithm to generate an SDD approximation. The method will generate

an approximation Ak for which k = kmax or kA�Akk < �min. The work of each inner iteration

is controlled by the parameters lmax, the maximum number of allowed inner iterations, and

�min, the relative improvement threshold. The approximation Ak in Step (2.5) is usually not

formed explicitly; rather, the individual elements (dk, xk, yk) are stored. Similarly, Rk+1 in

Step (2.6) can be applied in Steps (2.2.1), (2.2.2), (2.2.3), and (2.4) without explicitly forming

it.

2.2. Convergence of the SDD

We show that the norm of the residual generated by the SDD algorithm is strictly decreasing

and that under certain circumstances, the approximation generated by the SDD algorithm

converges linearly to the original matrix.

Lemma 1 ([O'Leary and Peleg 1983]). The residual matrices generated by the SDD algo-

rithm satisfy

kRk+1kF < kRkkF for all k such that Rk 6= 0:

Proof. At the end of the inner iterations, we are guaranteed to have found xk and yk such

that xTkRkyk > 0. The result follows from (6).

Several strategies can be used to initialize y in Step (2.1) in the SDD algorithm (Figure 1):
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1. Let Rk denote the residual, and initialize R1  A.
Let �k = kRkk

2
F
be the norm of the residual, and initialize �1  kR1k2F .

Let Ak denote the k-term approximation, and initialize A0  0.
Choose kmax, the maximum number of terms in the approximation.
Choose �min, the desired accuracy of the approximation.
Choose lmax, the maximum allowable inner iterations.
Choose �min, the minimum relative improvement, and set � > 2�min.

2. For k = 1; 2; : : : ; kmax, while �k > �min, do

1. Choose y so that Rky 6= 0.

2. For l = 1; 2; : : : ; lmax, while � > �min, do

1. Set s 
Rky

kyk22
.

Solve max
(xT s)2

kxk22
s.t. x 2 Sm:

2. Set s 
RT
k
x

kxk22
.

Solve max
(yT s)2

kyk22
s.t. y 2 Sn:

3. �  
(xTRky)

2

kxk22kyk
2
2

.

4. If l > 1: � 
� � ��
��

.

5. ��  �.

End l-loop.

3. xk  x, yk  y.

4. dk  
xT
k
Rkyk

kxkk
2
2kykk

2
2

.

5. Ak  Ak�1 + dkxky
T
k
.

6. Rk+1  Rk � dkxky
T
k
.

7. �k+1  �k � �.

End k-loop.

Fig. 1. Computing an SDD.
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1. Maximum element (MAX) initialization initializes yk = ej , where j is the column containing

the largest magnitude entry in Rk. The MAX initialization scheme leads to a linearly con-

vergent algorithm (Theorem 3) but is computationally expensive if Rk is stored implicitly

as A�Ak.

2. Cycling (CYC) initialization sets yk = ei where i = (k mod n)+ 1. Unfortunately, the rate

of convergence can be as slow as n-step linear [Kolda 1997].

3. Threshold (THR) initialization also cycles through the unit vectors, but it does not accept

a given vector unless it satis�es kRkejk
2
2 � kRkk

2
F =n. We are guaranteed that at least

one unit vector will satisfy this inequality by de�nition of the F-norm. Even though Rk is

stored implicitly, this threshold test is easy to perform because we only need to multiply

Rk by a vector. Furthermore, if the �rst vector tried is accepted, no extra computational

expense is incurred because the computed vector s = Rky is used in the inner iteration.

This scheme is shown to be linearly convergent (Theorem 4).

4. SVD initialization uses a discrete version of the left singular vector v of Rk, corresponding

to the largest singular value, to initialize the iteration. If the integer restriction on our

problem (1) is removed, then the singular vector is optimal, and we can form a discrete

approximation to it by �nding y 2 Sn that is a discrete approximation to v; that is, �nd a

y that solves

min kŷ � vk2 s.t. y 2 Sn; ŷ � y=kyk2: (7)

This also yields a linearly convergent algorithm (Theorem 6).

We conclude this section with the proof of these convergence results.

Theorem 3. [Kolda 1997] The sequence fAkg generated by the SDD algorithm with MAX

initialization converges to A in the Frobenius norm. Furthermore, the rate of convergence is at

least linear.

Proof. Without loss of generality, assume that Rk 6= 0 for all k; otherwise, the algorithm

terminates at the exact solution. Consider a �xed index k, and let (i; j) be the index of the

largest magnitude element in Rk. Then the MAX initialization scheme chooses y = ej . Since

the �rst part of the inner iteration picks the optimal x, it must be as least as good as choosing

x = ei, so

(xTkRkyk)
2

kxkk22kykk
2
2

�
(eTi Rkej)

2

keik22kejk
2
2

� r2ij �
kRkk

2
F

mn
: (8)

Thus

kRk+1k
2
F = kRkk

2
F �

(xTkRkyk)
2

kxkk22kykk
2
2

�

�
1�

1

mn

�
kRkk

2
F �

�
1�

1

mn

�k
kR0k

2
F :

Hence kRkkF ! 0, and the rate of convergence is at least linear.

Theorem 4. [Kolda 1997] The sequence fAkg generated by the SDD algorithm with THR

initialization converges to A in the Frobenius norm. Furthermore, the rate of convergence is at

least linear.
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Proof. The proof is similar to that for Theorem 3 and so is omitted.

Using arguments similar to those in Theorem 2, we can see that the discretization of the

singular vector for SVD initialization can be computed easily.

Theorem 5. [Kolda 1997] For the integer program (7), if it is known that y has exactly J

nonzeros, then the closest y 2 Sn to v is given by

yij =

�
sign(vij ) if 1 � j � J

0 if J + 1 � j � n
;

where the elements of v have been sorted so that

jvi1 j � jvi2 j � � � � � jvim j:

Therefore, there are only n possible y-vectors to check to determine the optimal solution for

(7).

Theorem 6. [Kolda 1997] The sequence fAkg generated by the SDD algorithm with SVD

initialization converges to A in the Frobenius norm. Furthermore, the rate of convergence is at

least linear.

Proof. Let (�; u; v) be the �rst singular triplet of Rk. Denote the (i; j) entry of Rk by rij .

Choose an initial y that solves (7). Without loss of generality, assume that the elements of v

are ordered so that

jv1j � jv2j � : : : � jvnj:

Let J be the number of nonzeros in y. Then

� = uTRv =

JX
j=1

vj

mX
i=1

rijui +

nX
j=J+1

vj

mX
i=1

rijui;

and the largest magnitude elements of v must correspond to the largest magnitude elements of

Ru (since v = �Ru), so

JX
j=1

vj

mX
i=1

rijui �
J

n
�:

Each vi is less than or equal to one in magnitude, so substituting y in place of v yields

JX
j=1

yj

mX
i=1

rijui =

mX
i=1

ui

JX
j=1

rijyj �
J�

n
:

(Note that this guarantees that Ry 6= 0.) Thus there exists {̂ such that

u{̂

nX
j=1

r{̂jyj �
J�

mn
:

Therefore, setting x = e{̂ gives

(xTkRkyk)
2

kxkk22kykk
2
2

�
J2�2

J2m2n2
�

�2

m2n2
=

kRkk
2
F

minfm;ng �m2n2
: (9)

The proof concludes using the same arguments as in Theorem 3.
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An implementation discussion is given in x6, and numerical comparisons of the di�erent

initialization strategies are presented in x7.

3. The Weighted SDD

Let A 2 <m�n be a given matrix, and let W 2 <m�n be a given matrix of nonnegative weights.

The weighted approximation problem is to �nd a matrix B 2 <m�n that solves

min kA�Bk2W ;

subject to some constraints on B. Here the weighted norm k � kW is de�ned as

kAk2W =

mX
i=1

nX
j=1

a2ijwij :

3.1. Computing the Weighted SDD

The case where B is a low rank matrix has been considered by Gabriel and Zamir [1979] and

others, and they obtain a solution with some similarities to the truncated singular value decom-

position, although computation is much more expensive. We show how to generate a weighted

approximation of the form dxyT . As with the regular SDD, we form the 1-term approximations

iteratively and add these approximations together to build up a k-term approximation. At each

step, then, we solve the problem

min Fk(d; x; y) � kRk � dxyT k2W s.t. x 2 Sm; y 2 Sn; d > 0: (10)

Here Rk � A�
Pk�1

i=1 dixiy
T
i is the residual matrix. As with the regular SDD, this is a mixed

integer programming problem that can be rewritten as an integer program. First, recall the

de�nition of the Hadamard or elementwise product of matrices; that is, (A �B)ij = aijbij .

Theorem 7. Solving the mixed integer program (10) is equivalent to solving the integer pro-

gram

max ~Fk(x; y) �

�
xT (Rk �W ) y

�2
(x � x)T W (y � y)

s.t. x 2 Sm; y 2 Sn: (11)

Proof. The proof is analogous to that of Theorem 1 except that

d� =
xT (Rk �W ) y

(x � x)T W (y � y)
:

As with the regular SDD, an alternating method will be used to generate an approximate

solution to (11). Assuming that y is �xed, ~Fk can be written as

~Fk(x; y) =

�
xT s

�2
(x � x)T v

; (12)

where s � (Rk �W ) y and v �W (y �y). To determine the maximum, 2m�1 possibilities must

be checked. Again, this can be reduced to just checking m possibilities, although the proof is

more di�cult than that for Theorem 2.

Theorem 8. For the integer program (12), if it is known that x has exactly J nonzeros, then
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the solution is given by

xij =

�
sign(sij ) if 1 � j � J

0 if J + 1 � j � m
;

where the pairs of (si; vi) have been sorted so that

jsi1 j

vi1
�
jsi2 j

vi2
� � � � �

jsim j

vim
:

Proof. First note that if si is zero, then a nonzero value of xi cannot a�ect the numerator

of ~F , and xi = 0 minimizes the denominator, so xi = 0 is optimal. If vi = 0, then si = 0, so

choose xi = 0. Therefore, we need only consider indices for which si and vi are nonzero, and

without loss of generality, we will assume that the si are all positive and ordered so that ij = j,

j = 1; : : : ;m.

We complete the proof by showing that if the optimal solution has nonzeroes with indices in

some set I , and if q 2 I and p < q, then p 2 I .

Assume to the contrary, and partition I into I1 [ I2, where indices in I1 are less than p and

those in I2 are greater than p. The case p = 1 is left to the reader; here we assume p > 1.

For ease of notation, let

S1 =
X
i2I1

si; V1 =
X
i2I1

vi;

and de�ne S2 and V2 analogously.

By the ordering of the ratios s=v, we know that sivp < spvi for all i 2 I2; therefore,

S2vp < spV2 : (13)

Since I is optimal, we know that

S21
V1

�
(S1 + S2)

2

V1 + V2
;

therefore, by cross-multiplying and canceling terms, we obtain

S21V2 � S22V1 + 2S1S2V1 : (14)

Similarly,

(S1 + S2 + sp)
2

V1 + V2 + vp
�

(S1 + S2)
2

V1 + V2
;

so

s2p(V1 + V2) + 2S1sp(V1 + V2) + 2S2sp(V1 + V2)

� S21vp + S22vp + 2S1S2vp

� S21vp + S2spV2 + 2S1spV2 by (13)

� (S22V1 + 2S1S2V1)
vp
V2

+ S2spV2 + 2S1spV2 by (14)

� (S2spV1 + 2S1spV1) + S2spV2 + 2S1spV2 by (13)
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1. Let Rk denote the residual, and initialize R1  A.
Let �k = kRkk

2
W

be the norm of the residual, and initialize �1  kR1k2W .
Let Ak denote the k-term approximation, and initialize A0  0.
Choose kmax, the maximum number of terms in the approximation.
Choose �min, the desired accuracy of the approximation.
Choose lmax, the maximum allowable inner iterations.
Choose �min, the minimum relative improvement, and set � > 2�min.

2. For k = 1; 2; : : : ; kmax, while �k > �min, do

1. Choose y so that (Rk �W )y 6= 0..

2. For l = 1; 2; : : : ; lmax,while � > �min, do

1. Set s (Rk �W ) y, v  W (y � y).

Solve max
(xT s)2

(x � x)T v
s.t. x 2 Sm:

2. Set s (Rk �W )T x, v  WT (x � x).

Solve max
(yT s)2

kyk22
s.t. y 2 Sn:

3. �  

�
xT (Rk �W ) y

�2
(x � x)TW (y � y)

.

4. If l > 1: � 
� � ��
��

.

5. ��  �.

End l-loop.

3. xk  x, yk  y.

4. dk  
xT
k
(Rk �W ) yk

(x � x)TW (y � y)
.

5. Ak  Ak�1 + dkxky
T
k
.

6. Rk+1  Rk � dkxky
T
k
.

7. �k+1  �k � �.

End k-loop.

Fig. 2. Computing a Weighted SDD.
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Canceling terms in this inequality we obtain

s2p(V1 + V2) + S2sp(V1 + V2) � 0 ;

a contradiction.

The algorithm for the weighted SDD, shown in Figure 2, is nearly the same as the algorithm

for the regular SDD, shown in Figure 1.

3.2. Convergence of the Weighted SDD

As with the regular SDD, we show that the weighted norm of the residual generated by the

weighted SDD algorithm is strictly decreasing and, furthermore, the weighted SDD approxima-

tion converges linearly to the original matrix.

Lemma 2. The residual matrices generated by the weighted SDD algorithm satisfy

kRk+1kW < kRkkW for all k such that Rk 6= 0:

Proof. The proof is similar to Lemma 1 and is therefore omitted.

As with the SDD, several di�erent strategies can be used to initialize y in Step (2.1) in

the weighted SDD algorithm (Figure 2). Here, we only present the di�erences between these

schemes and those for the SDD. The same convergence results hold, and the proofs are similar

to those given for the SDD.

1. MAX: Choose ej such that j is the index of the column containing the largest magnitude

entry in Rk �Rk �W .

2. CYC: No di�erence.

3. THR: Accept a given unit vector only if it satis�es kRkejk
2
W � kRkk

2
W =n.

Note that there is no SVD starting strategy since there is no simple analog to the SVD in

the weighted case.

4. The Tensor SDD

Let A be an m1 �m2 � � � � �mn tensor over <. The order of A is n. The dimension of A is

m �
Qn

j=1mj , and mj is the jth subdimension. An element of A is speci�ed as

Ai1i2���in ;

where ij 2 f1; 2; : : : ;mjg for j = 1; : : : ; n. A matrix is a tensor of order two.

As with matrices, we may be interested in a storage-e�cient approximation of a given tensor.

We extend the notion of the SDD to a tensor SDD. First we de�ne some notation for tensors,

consistent with [Kolda 1999].
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4.1. Notation

If A and B are two tensors of the same size (that is, the order n and all subdimensions mj are

equal), then the inner product of A and B is de�ned as

A � B �

m1X
i1=1

m2X
i2=1

� � �

mnX
in=1

Ai1i2���inBi1i2���in :

We de�ne the norm of A, kAk, to be

kAk2 � A � A =

m1X
i1=1

m2X
i2=1

� � �

mnX
in=1

A2
i1i2���in

:

Suppose B is an m1 � � � � �mj�1 �mj+1 � � � � �mn tensor of order n � 1. Then the ijth

(1 � ij � mj) element of the contracted product of A and B is de�ned as

(A � B)ij �

m1X
i1=1

� � �

mj�1X
ij�1=1

mj+1X
ij+1=1

� � �

mnX
in=1

Ai1���ij�1ij ij+1���inBi1���ij�1ij+1���in :

A decomposed tensor is a tensor that can be written as

x = x(1) 
 x(2) 
 � � � 
 x(n);

where x(j) 2 <mj for j = 1; : : : ; n. The vectors x(j) are called the components of x. In this

case,

xi1i2���in = x
(1)
i1
x
(2)
i2
� � �x

(n)
in

:

Lowercase letters denote decomposed tensors.

Lemma 3 ([Kolda 1999]). Let A be a tensor of order n and x a decomposed tensor of order

p. Then

A � x = (A � x(�j)) � x(j);

where the notation x(�j) indicates x with the jth component removed, that is,

x(�j) � x(1) 
 � � � 
 x(j�1) 
 x(j+1) 
 � � � 
 x(p):

The notion of rank for tensors of order greater than two is a nontrivial matter (see, e.g.,

Kolda [1999]), but a single decomposed tensor is always a tensor of rank one.

4.2. De�nition of the Tensor SDD

Suppose we wish to approximate an n-dimensional tensor A as follows,

A � Ak �
kX
i=1

dixi;

where di > 0 and xi is a decomposed tensor whose components are restricted to x
(j)
i 2 Smj ,

with S = f�1; 0; 1g. This is called a k-term tensor SDD.

The SDD representation is e�cient in terms of storage. If the tensor A is dense, the total
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storage required for A is




nY
j=1

mj ;

where 
 is the amount of storage required for each element of A. For example, if the elements

of A are integer values between 0 and 255, then 
 is one byte (8 bits). The storage required for

the approximation Ak is

k

0
@�+ �

nX
j=1

mj

1
A ;

where � is the storage required for each dk and is usually chosen to be equal to 
 and � is the

amount of storage required to store each element of S, that is, log2 3 bits. Since k �
Qn

j=1mj ,

the approximation generally requires signi�cantly less storage than the original tensor.

4.3. Computing a Tensor SDD

As with the regular and weighted SDDs, a tensor SDD can be constructed via a greedy al-

gorithm. Each iteration, a new d and x are computed that are the solution to the following

subproblem:

min Fk(d; x) � kRk � dxk2 s.t. d > 0; x(j) 2 Smj for j = 1; : : : ; n; (15)

where Rk � A�
Pk�1

i=1 dixi denotes the kth residual matrix. This is a mixed integer program-

ming problem, but it can be simpli�ed to an integer program as demonstrated by the following

theorem, a generalization of Theorem 1.

Theorem 9. Solving the mixed integer program (15) is equivalent to solving the integer pro-

gram

max ~F (x) =
(R � x)2

kxk2
s.t. x(j) 2 Smj for j = 1; : : : ; n: (16)

Proof. The proof follows the same progression as the proof for Theorem 1 except that

d� =
R � x

kxk2
:

Solving (16) is an integer programming problem that has 3m1+m2+���+mn possible solutions.

To solve this problem approximately, an alternating algorithm will be used. The idea is the

same as for the regular and weighed SDDs. Fix all the components of x except one, say x(j),

and �nd the optimal x(j) under those conditions. Repeat this process for another value of j,

continuing until improvement in the value of ~F (x) stagnates.

Assume that all components of x are �xed except x(j). Then (16) reduces to

max
(s � x(j))2

kx(j)k22
s.t. x(j) 2 Smj ;

where s � (Rk � x
(�j))=kx(�j)k2. This is same as problem (5), so we know how to solve it.
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1. Let Rk denote the residual, and initialize R1  A.
Let �k = kRkk

2 be the norm of the residual, and initialize �1  kR1k2.
Let Ak denote the k-term approximation, and initialize A0  0.
Choose kmax, the maximum number of terms in the approximation.
Choose �min, the desired accuracy of the approximation.
Choose lmax, the maximum allowable inner iterations.
Choose �min, the minimum relative improvement, and set � > 2�min.

2. For k = 1; 2; : : : ; kmax, while �k > �min, do

1. Initialize x = x(1) 
 x(2) 
 � � � 
 x(n).

2. For l = 1; 2; : : : ; lmax, while � > �min, do

1. For j = 1; 2; : : : ; n do
Set s Rk � x

(�j).

Solve max
(sT x(j))2

kx(j)k22
s.t. x(j) 2 Smj :

End j-loop.

2. �  
(Rk � x)

2

kxk2
.

3. If l > 1: � 
� � ��
��

.

4. ��  �.

End l-loop.

3. xk  x.

4. dk  
Rk � xk

kxkk2
.

5. Ak  Ak�1 + dkxk.

6. Rk+1  Rk � dkxk.

7. �k+1  �k � �.

End k-loop.

Fig. 3. Computing a Tensor SDD.
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The tensor SDD algorithm is given in Figure 3. In Step (2.1), x should be chosen so that

Rk � x 6= 0. Unless Rk is zero itself (in which case Ak�1 = A), it is always possible to pick such

an x. The for-loop in Step (2.2.1) does not need to go through the components of x in order.

That loop could be replaced by \For j = �(1); �(2); : : : ; �(n) do," where � is an n-permutation.

Note that in each step of (2.2.1), the value of x may change and that the objective function is

guaranteed to be at least as good as it was with the previous x.

4.4. Convergence of the Tensor SDD

Like the SDD, the tensor SDD algorithm has the property that the norm of the residual de-

creases each outer iteration. Furthermore, we can prove convergence results similar to those for

the SDD (proofs are omitted but are similar to those for the SDD) using each of the following

starting strategies in Step (2a) of the tensor SDD algorithm:

1. MAX: Initialize x = e
(1)
j1

 e

(2)
j2

� � �
 e

(n)
jn

, where rj1j2:::jn is the largest magnitude element

of R.

2. CYC: Same idea as for the SDD, but now the cycle is
nQ
j=2

mj long.

3. THR: Choose x(�1) = e
(2)
j2

 � � � 
 e

(n)
jn

(i.e., x with the �rst component removed) such that

k(R � x(�1))k22 � kRk2=

nY
j=2

mj :

Although an appropriate choice of e
(2)
j2

� � �
e

(n)
jn

is guaranteed to exist, it may be di�cult

to �nd because of the large search space of elements to search through.

5. Applications

The SDD is useful in applications involving storage compression, data �ltering, and feature

extraction. As examples, we discuss in this section the use of the SDD in image compression,

chromosome classi�cation, and latent semantic indexing of documents.

5.1. Data Compression via the SDD

If a matrix consumes too much storage space, then the SDD is one way to reduce the storage

burden. For example, the SDD can be used for image compression. The SDD was originally

developed by O'Leary and Peleg [1983] for this application. If each pixel value (e.g., gray level)

is stored as a matrix entry, then a k-term SDD of the resulting matrix can be stored as an

approximation to the original image.

Other matrix approximation techniques have been used for image compression. The SVD

[Golub and Van Loan 1989] provides a set of basis vectors that gives the optimal low-rank

approximation in the sense of minimizing the sum squared errors (Frobenius norm). But these

vectors are expensive to generate and take quite a bit of storage space (n + m + 1 
oating

point elements per term, although it is possible to use lower precision). At the other extreme,

predetermined basis vectors can be used (e.g., Haar basis or other wavelet bases). In this case,

the basis vectors do not need to be explicitly stored, but the number of terms is generally
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much larger than for the SVD. Although the SDD chooses the basis vectors to �t the particular

problem (like the SVD), it chooses them with restricted entries (like the wavelet bases), making

the storage per term only log2 3(n+m) bits plus one 
oating point number.

Experiments using the SDD for images achieved 10 to 1 compression (using the SDD with

run-length encoding) without visual degradation of the image [O'Leary and Peleg 1983].

5.2. Data Filtering via the SDD

The k-term approximations produced by the SDD algorithm can be thought of as �ltered

approximations, �nding relations between the columns (or rows) of the matrix that are hidden

by local variations. Thus, if we have many observations of the same vector-valued phenomenon,

then an SDD of the data can reveal the essential unchanging characteristics.

This fact has been used in chromosome classi�cation. Given a \training set" consisting of

many observations of a given type of chromosome (e.g., a human X chromosome), an SDD

of this data extracts common characteristics, similar to a principal component analysis, but

typically requiring less storage space. Then the idealized representation of this chromosome

can be used to identify other chromosomes of the same type (chromosome karyotyping). For

more information on this technique, see [Conroy et al. 1999].

5.3. Feature Extraction via the SDD

The low rank approximations produced by the SDD extract features that are common among

the columns (or rows) of the matrix. This task is addressed by latent semantic indexing (LSI)

of documents. A database of documents can be represented by a term-document matrix, in

which each matrix entry represents the importance of some term in a particular document.

Documents can be clustered for retrieval based on common features. Standard algorithms use

the SVD to extract these feature vectors, but the storage involved is often greater than that

for the original matrix. In contrast, the SDD has been used by Kolda and O'Leary [1998, 1999]

to achieve similar retrieval performance at a much lower storage cost.

6. Implementation Details

We focus on the regular SDD; the details for the weighted and tensor SDDs are similar. The

primary advantage of the SDD over matrix decompositions such as the SVD is that the SDD

requires very little memory. In this section, we illustrate the data structures and implementation

details of the C code in our package, SDDPACK, that achieve the storage savings.

6.1. Data Structures

An entry from the discrete set S, referred to as an S-value, can be stored using only log2 3 bits.

We actually use two bits of storage per S-value because it is advantageous in computations

involving the S-values (see x6.2) and requires only 26% more memory. The �rst bit is the value

bit and is on if the S-value is nonzero and o� otherwise; the second bit is the sign bit and is

on for an S-value of -1, o� for 1, and unde�ned for 0 (Table 1). The unde�ned bits would not

be stored if we were storing using only log2 3 bits per S-value.
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Table 1. Bit representation of S-values.
S-Value Value Bit Sign Bit

0 0 undef.

1 1 0

-1 1 1

x =

2
66666666666666666664

�1
0
1
1
�1
0
0
0
1
1
�1
0
�1
0
0

3
77777777777777777775

The S-vector x shown at left has 15 entries. Let x be a pointer
to its representation on an 8-bit architecture. In order to
store 15 bits, the value and sign arrays are each allocated
two words of memory. The values of all elements of the data
structure are given below. The binary values of the 8-bit
words are shown for the value and sign arrays; the question
marks (?) represent bits that are unde�ned. Note that the
low order bits are used �rst, so the representation at the word
level is right-to-left.

x->length = 15

x->value[1] = 00011101 x->value[2] = ?0010111

x->sign[1] = ???100?1 x->sign[2] = ???1?100

Fig. 4. Illustration of svector data structure.

Each iteration, a new (d; x; y) triplet is computed. The x and y vectors of length m and n,

respectively, are referred to as S-vectors. In SDDPACK, we store each S-vector's value and

sign arrays packed into unsigned long integer arrays.

Suppose that we are working on a p-bit architecture (i.e., the length of a single word of

memory is p bits). Then the memory allocated to the value array to hold m bits is dm=pe

words. Storage for the sign array is the same. An example of an S-vector and its representation

on an 8-bit architecture is given in Figure 4. Notice that extra bits in the last word of the array

and sign bits associated with zero S-values are unde�ned. Extra bits are ignored (i.e., masked

to an appropriate value) in any calculations. We used an 8-bit example for simplicity; current

architectures are generally 32- or 64-bit (Table 2).

Table 2. Current architectures.
32-bit 64-bit

Sun Sparc SGI Octane
Intel Pentium Dec Alpha
IBM RS6000

6.2. Computations with Objects Using Packed Storage

Given an S-vector in packed storage, we can look up the value in a particular entry as follows.

If i is the desired entry, then the index into the packed array is i div p, and the bit we want

inside that word is i mod p, and the desired bit can be masked o�. We �rst do a mask on the

appropriate word in the value array. If the result is zero, then entry i is zero, and we need do

no further work. Otherwise, the entry is either +1 or -1, and we need to determine the sign.
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We mask o� the appropriate word in the sign array. If that is zero, the entry is +1; otherwise,

it is -1.

For example, Figure 5 shows how to look up entry 10 in the example in Figure 4. Here i is

the desired entry. To compute index, the index into the packed array, divide by p, the number

of bits per word. Since p is always a power of two, this can be accomplished by a right shift. In

this example, we right shift 3 since log2 8 = 3. Given the correct index into the packed arrays,

the correct bit inside the word is determined by a mod by p. Again, since p is always a power

of two, we can use a shortcut by doing a logical AND with p�1, in this example, 7. Then mask

the appropriate word in the value array. In this example, it is nonzero, so the entry is either

+1 or -1. Then mask the appropriate word in the sign array and determine that the entry is

+1.

i = 10

index = i >> 3

mask = 1 << (i AND 7)

x->value[index] AND mask = 00000010

x->sign[index] AND mask = 00000000

Fig. 5. Looking up a value in a packed array.

Note that the alignment of the value and sign arrays makes it easy to do individual lookups

of values. If we did not store the `�ller' bits in the sign array for the zero entries, the sign array

would be much shorter, but we would have a di�cult time knowing where in the sign array to

look for the appropriate bit.

In the previous example, we saw how to look up a random entry in a packed array. Often

we walk through an S-vector in sequence. In that case, computations can be performed even

more quickly by copying the current value and sign words into the register to be used p times

and quickly updating the mask with just a single left shift. Every p entries, we reset the mask

to one and swap the next value and sign words into the register.

The inner product between two S-vectors, something that we require, can be computed as

follows. The result is the number of nonzeros in common minus twice the number of common

nonzeros with opposite signs. Pseudo-code is given in Figure 6 for the inner product of two

S-vectors a and b. In practice, the logical ANDs and ORs are done on a word-by-word basis

and the popcount (sum) is determined using a lookup table on a byte-by-byte basis. So, for

computing the inner product of two m-long S-vectors, the work required is 3dm=pe+ 4dm=8e

and requires no multiplication.

common = a->value AND b->value

oppsign = (a-> sign XOR b->sign) AND common

ip = popcount(common) - 2 popcount(oppsign)

Fig. 6. Inner product of two S-vectors.

Each iteration of the SDD calculation, the most expensive operations are the computations

of Rky or RT
k x (Steps (2.2.1) and (2.2.2) of the SDD Algorithm of Figure 1). We focus on
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the computation of Rky and explain the di�erences for the transpose at the conclusion. The

residual breaks into two parts: the original matrix, A, and the (k�1)-term SDD approximation

that we denote by XDY T .

The computation v = Ay is a sparse matrix times an S-vector. The sparse matrix is stored

in compressed sparse column (CSC) format. We loop through the matrix columnwise, which

means that we walk through the y-vector in sequence. If yj is zero, then nothing is done with

column j. Otherwise, we either add (yj = 1) or subtract (yj = �1) the entries in column j

from the appropriate entries in the solution vector v.

The computation of w = XDY T y breaks down into three parts: Y T y, D(Y T y), and

X(DY T y). The �rst part is an S-matrix times an S-vector, which reduces to an inner product

between two S-vectors for each entry in the solution. The result of Y T y is an integer vec-

tor. The D(Y T y) is just a simple scaling operation, and the result is a real vector. The �nal

product is X(DY T y), and in this case we walk through each bit in the X matrix column by

column and take appropriate action. Again, only additions and subtractions are required, no

multiplications.

In the case of the transpose computation, the main di�erence is in the computation of ATx.

Here, we are forced to use random access into x since A is stored in CSC format. The method

for computing (XDY T )Tx is nearly identical to that described previously for XDY T y, except

that the roles of X and Y are swapped.

So, the only multiplications required in our computations are the diagonal scalings; everything

else is additions and subtractions. Further, the pieces of the SDD are small and �t well into

cache.

7. Numerical Results

The computational experiments presented here are done in Matlab, with the Matlab code and

examples provided in SDDPACK. In general, the C SDDPACK code should be used when speed

and storage e�ciency are concerns. No results are presented here for the weighted or tensor

SDDs although MATLAB code for these decompositions are included. No C code is provided

for these in SDDPACK.

We discuss previous research and present new results on the SDD and starting criteria as

well as comparisons between the SDD and the SVD.

In [Kolda 1997], comparisons of the various starting criteria on small, dense matrices are

presented. To summarize, the MAX, CYC, and THR techniques are nearly identical in per-

formance. The SVD initialization typically results in fewer inner iterations per outer iteration,

but the gain is o�set by the expense of computing the starting vector.

In [Kolda and O'Leary 1998], the SDD and SVD are compared for latent semantic indexing

for information retrieval. At equal levels of retrieval performance, the SDD model required

approximately 20 times less storage and performed queries about twice as fast. On the negative

side, the SVD can be computed about four times faster than the SDD for equal performance
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levels. The SDD computations used option PER, as described subsequently | we may be able

to improve the speed and performance by using option THR instead.

We compare various initialization strategies for the SDD on several sparse matrices from

MatrixMarket; the test set is described in Table 3. We test four di�erent initialization strategies

as listed below.

THR: Cycle through the unit vectors (starting where it left o� at the previous iteration) until

kRkejk
2
2 � kRkk

2
F =n, and set y = ej . (Threshold)

CYC: Initialize y = ei, where i = ((k � 1) mod n) + 1. (Cycling)

ONE: Initialize y to the all ones vector. (Ones)

PER: Initialize y to a vector such that elements 1; 101; 201; : : : are one and the remaining

elements are zero. (Periodic ones)

We do not test the MAX strategy because these matrices are sparse, so the residual is stored

implicitly. The other parameters of the SDD are set as follows: kmax is set to the rank of the

matrix, �min = 0:01, lmax = 100, and �min = 0.

The performance of these four strategies on our four test matrices is shown in Table 4. The

table compares the relative reduction in the residual (as a percentage), the average number of

inner iterations (which includes the extra work for initialization in THR), and the density of

the �nal factors (as a percentage). The initialization can have a dramatic a�ect on the residual

after k terms. In the impcol c and watson2 matrices, THR and CYC are drastically better

than ONE and PER. The number of inner iterations is lowest overall for CYC, with THR being

a close second. In terms of density, THR and CYC are drastically better in every case, perhaps

because the initial vector is sparse. It seems that the density of the factors may be somewhat

related to the density of the original matrix. Overall, THR is best, with CYC a close second.

Table 3. Test matrices.
Matrix Rows Cols NNZ Rank Density(%)

bfw62a 62 62 450 62 11.7
impcol c 137 137 411 137 2.2
west0132 132 132 414 132 2.4
watson2 66 67 409 66 9.2

Table 4. Comparison of initialization techniques.
bfw62a

Init. % Resid. In. Its. % Density

THR 28.19 3.69 9.33

CYC 25.54 3.73 9.55
ONE 22.86 6.81 41.13
PER 25.48 6.79 21.48

impcol c

Init. % Resid. In. Its. % Density

THR 3.53 2.58 1.79

CYC 7.86 3.47 6.47
ONE 36.93 5.95 24.32
PER 31.09 6.39 21.24

west0132

Init. % Resid. In. Its. % Density

THR 0.00 5.62 1.95
CYC 0.01 3.25 1.68

ONE 0.01 5.64 11.97
PER 0.30 8.46 3.54

watson2

Init. % Resid. In. Its. % Density

THR 16.99 3.02 3.87

CYC 20.51 2.76 4.17
ONE 78.74 5.42 18.94
PER 75.99 4.82 10.69
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In Figures 7{10, the SVD, SDD-THR, and SDD-CYC are compared. The results on bfw62a

are given in Figure 7. The upper left plot shows a comparison of the relative residual (kRkk=kR0k)

versus the number of terms. The SVD is the optimal decomposition for a �xed number of terms,

so the SDD curves will lie above it. However, the SDD still gives good reduction in the residual,

requiring only about twice as many terms as the SVD for the same level of reduction. SDD-

THR gives a better residual than SDD-CYC until the last few terms, where SDD-CYC `catches

up'. In the upper right, a plot of the residual versus the storage is shown; for the same level

of reduction in the residual, the storage requirement for the SDD is about one to two orders of

magnitude less than for the SVD. In the bottom plot, the singular values and SDD values are

shown, where the ith SDD value is de�ned as d̂i = dikxik2kyik2. Initially, the SDD values are

smaller than the singular values because they cannot capture as much information; later, they

are larger because they are capturing the information missed initially.

The impcol c matrix has an interesting singular value pattern (see Figure 8): there is one

isolated singular value at 11, a cluster of singular values at 3, and another cluster at 2. SDD-

THR mimics the SVD closely because SDD-THR also �nds one isolated singular SDD value, as

many SDD values at 3, and almost as many SDD values at 2. SDD-CYC, on the other hand,

has trouble mimicking singular values because it does not pick out the isolated value at �rst.

Still, both SDD variants are superior to the SVD in terms of storage vs. residual norm.

On west0132 (see Figure 9), we see phenomena similar to that for impcol c. SDD-THR �nds

isolated SDD values and quickly reduces the residual | almost as quickly as the SVD itself in

terms of number of terms. SDD-CYC has more trouble isolating SDD values but eventually

gets them as well. Here, SDD-THR is superior to the SVD in terms of storage, but SDD-CYC

is not.

The last matrix, watson2 (see Figure 10), most closely resembles bfw62a in the structure of

its singular values, although watson2 has three eigenvalues that are slightly isolated, and we

can see that both SDD methods eventually pick out such values which results in the steeper

drops in the residual curves. Again, SDD-THR does better than the SDD-CYC in all respects.

SDD-THR requires about twice as many terms to get the same reduction in storage as the

SVD, while using an order of magnitude less storage.

8. Conclusions

By presenting the code for computing a SDD, we hope to stimulate more uses of this storage-

e�cient matrix approximation method.

SDDPACK, containing Matlab and C code for the SDD, as well as Matlab code for the

weighted and tensor SDDs is available at

http://www.cs.umd.edu/users/oleary/.
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Fig. 7. Comparison of the SVD (solid line, x marks), SDD-THR (dashed line, o marks), and SDD-CYC (dotted
line, triangle marks) on bfw62a.
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Fig. 8. Comparison of the SVD (solid line, x marks), SDD-THR (dashed line, o marks), and SDD-CYC (dotted
line, triangle marks) on impcol c.
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Fig. 9. Comparison of the SVD (solid line, x marks), SDD-THR (dashed line, o marks), and SDD-CYC (dotted
line, triangle marks) on west0132.
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Fig. 10. Comparison of the SVD (solid line, x marks), SDD-THR (dashed line, o marks), and SDD-CYC
(dotted line, triangle marks) on watson2.
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