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Orthogonal Rank Decompositions for Tensors
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The theory of orthogonal rank decompositions for matrices is well understood, but the same
is not true for tensors. For tensors, even the notions of orthogonality and rank can be
interpreted several different ways. Tensor decompositions are useful in applications such
as principal component analysis for multiway data. We present two types of orthogonal
rank decompositions and describe methods to compute them. Furthermore, we conjecture
an extension of the Eckart-Young theorem for one of these decompositions and provide a
counterexample to show that it does not hold in the other case.

Let A be an my X mg X --- X m,, tensor over . The order of A is n. The dimension of A
is m = [[j_; mj, and m; is the ith subdimension. An element of A is specified as A; ;..
where i; € {1,2,...,m;} for j=1,...,n. If A and B are two tensors of the same size (that
is, the order and all subdimensions are equal) then the inner product of A and B is defined
as
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Correspondingly, the norm of A, ||A||, is defined as ||A]|> = A- A. A tensor A is a unit tensor
if ||A]| = 1. A decomposed tensor is a tensor that can be written as

where z0) € ™ for j = 1,...,n. The vectors ) are called the components of z. Lower
case letters denote decomposed tensors.

Lemma. Let x and y be decomposed tensors. Then

1. The inner product z -y = [}, 2 - y@,
2. The norm ||z|| = [T}, ||z

3. The sum of x and y is itself a decomposed tensor if and only if all but at most one of
the components of x and y are equal (within a scalar multiple), i.e., 1) = y\9) for all
7 but at most one.



Two unit decomposed tensors x and y are orthogonal if z-y = 0. They are strongly orthogonal
if, in addition, all components of z and y satisfy
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From these definitions, we obtain two concepts of orthogonal rank as described in [1]. Both
depend on decomposing a tensor A as,

A= Zoiui, (1)
=1

with different restrictions on the u;’s. (Here, we abuse notation by letting the subscript 4
denote the tensor index rather than an index into the tensor.)

1. The minimal r for which A can be written as the weighted sum of unit tensors that
are two-by-two orthogonal is the orthogonal rank of A, denoted rank, (A), and the
decomposition is called the orthogonal rank decomposition.

2. The minimal r for which A can be written as the weighted sum of unit tensors that are
two-by-two strongly orthogonal is the strong orthogonal rank of A, denoted rank j, (A),
and the decomposition is called the strongly orthogonal rank decomposition.

These decompositions can be computed using a type of “power method”, the details of which
are omitted here.

Example. Let ¢ and b be two orthogonal vectors in ™, and let A € R™ x R™ x R™ be
defined by

A= 01a@b®@b+0,b@b@b+03aRa®b (2)
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The first equation gives its strong orthogonal rank as three, and the second, its orthogonal
rank as two.

= yJol+o ®b®b+0o3a®a®b,

Theorem. [1] For a tensor A,
rank | (A) < rank (A).

Furthermore, equality holds if the order of A is two. For orders greater than two, there exist
tensors such that strict inequality holds.

n [1], the term “free” is used rather than “strong”.



Lemma. Neither the orthogonal nor strongly orthogonal rank decompositions are unique.

Example. The tensor in (2) from the previous example can also be expressed as

A=610RbQ0b+6:b@a@b+d3aRaRb (3)
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Observe that a.Lb, so (3) is also a strongly orthogonal rank decomposition of A.

The uniqueness problem is not addressed in [1]. The partial ‘fix’ for lack of uniqueness is the
following. Without loss of generality, assume that the o;’s in (1) are always ordered so that
o1 > 09 > -+ > 0,. Then define the unique (strongly) orthogonal rank decomposition to
be the (strongly) orthogonal rank decomposition that has the largest possible o1, and given
that choice for o1, has the largest possible o5, and so forth. This decomposition is unique in
the sense that the weights (0;’s) are unique. The unit tensors are unique if and only if no
two o;’s are equal.

An Eckart-Young theorem for tensors is given in [1] for both the orthogonal rank decompo-
sition and the strongly orthogonal rank decomposition; however, the proof in the first case
is incorrect, and the second claim is false.

Conjecture. (Eckart-Young extended to tensors) Let the unique orthogonal rank
decomposition of a tensor A be given as in (1) and assume that o1 > o9 > --- > o0.. Then
the best orthogonal rank p (p < r) approzimation to A satisfies

T
min ||A—Ap||2: Z Uf

rank | Ap=p i=pt1

and is given by

p
Ap = Z g;Uj.
1=1

We believe that an Eckart-Young type theorem holds in the orthogonal case, but we can
produce a counterexample to an Eckart-Young theorem for strongly orthogonal rank decom-
positions.



Other research.

e Asynchronous Parallel Direct Search Optimization. A direct search method for op-
timization uses only function evaluations and never forms a gradient approximation.
Recently such methods have gained respect within the mathematical community for
their robustness and their ability to be easily parallelized. The parallel version, how-
ever, is constrained by the slowest processor because it has a synchronization step
every iteration. We have developed a completely asynchronous parallel version of di-
rect search that is guaranteed to converge (under the same assumptions as ‘standard’
direct search). This is joint research with Patricia Hough of Sandia National Labs and
Virginia Torczon of the College of William & Mary.

e Mathematical Methods for Karyotyping. (See the abstract by John Conroy.) This is
joint research with John Conroy of IDA Center for Computing Sciences and Dianne P.
O’Leary of the University of Maryland.

e Semidiscrete Decomposition (SDD). The SDD is a ‘storage efficient’ matrix approxima-
tion defined as follows. An m x n matrix A is approximated as A =~ Ele d;iziyl, where
the d;’s are positive scalars, and the z;’s and y;’s are m- and n-vectors whose entries
are constrained to be in the set {—1,0,1}. It has been used in image compression and
information retrieval. We have obtained convergence results for the SDD. We have
variations for the “weighted” problem as well as for tensors. This is joint research with
O’Leary.

e New Graph Models for Matriz Partitioning. We propose a bipartite graph model for
partitioning rectangular matrices as well as several partitioning algorithms for bipartite
graphs. We are now proposing a hypergraph model for matrix partitioning in both the
standard and rectangular case because it overcomes many of the limitations in the
current models. This is joint research with Bruce Hendrickson of Sandia National
Labs.
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