Reliable Execution
of MPI Applications

Andrew Lumsdaine
Brian Barrett
Jeff Squyres

Computer Science Department
Indiana University
Bloomington, IN



Overview
7

e LAM/MPI background

e \Wherefore fault tolerance / reliability?

e Fault tolerance currently provided by LAM/MPI
e Behavior of MPI in presence of failure

e Present and future work

e Conclusions



LAM/MPI background
.

e Author history:
— Ohio Supercomputing Center
— University of Notre Dame
- Indiana University

e http://www.lam-mpi.org/



LAM/MPI Background
.

e Open source implementation of MPI

e Contains all of MPI-1 and most of MPI-2
- Dynamic processes
— C++ bindings
- 1/0
- One-sided communication

e Runs on just about any POSIX system



LAM/MPI Architecture

e Layered on Trollius
- Parallel RTE developed before the MPI standard




Trollius and MPI Trollius Layer

MPI Program

MPI Layer

e Trollius provides a high level of infrastructure

Uses a small user-level daemon running on each
node: the lamd

Reliable point-to-point communication layer
(UDP)

Process control environment
Remote /O with Unix-like semantics
Minimal fault detection
Communication tracing system



MPI Program

MPI Layer

Trollius and MPI Trollius Layer

e MPI layer uses many of the services
provided by Trollius

— Uses Trollius’ out-of-band communication layer
for meta data

- Process control to launch and and reliably take
down jobs

— Job status information maintained by daemons

e Optionally uses Trollius layer for MPI
communication (lamd RPI)



Why Fault Tolerance?
.

e COTS clusters are clearly the “Big Thing”

e Failures becoming common as code moves
from “Big Iron” to large clusters

- Hardware failure
— OS failure
— Kicking out the power cord

e Clusters growing: 1000’s of nodes desirable

e Losing entire job because one node failed
costly in time and CPU cycles



What Do We Want?
N

e Abllity to “keep going” after a failure

e Faillures we do want to recover from:
- Unresponsive nodes
-~ Network link failures




What Do We Not Want?
N

e Failures we do not want to recover from:
- Data integrity (memory/transmission errors, etc.)
- Program errors (seqg faults, divide by O, etc.)
—- Byzantine errors

e These are considered to be user problems



Approaches to Reliability

e Both application and middleware are
iInvolved



Approaches to Reliability

e On fallure, state may be lost




Approaches to Reliability

e On fallure, state may be lost




Approaches to Reliability
-

e Use a stateless programming model

e Assist application in reconstructing state
e Periodically save state (checkpoint)

e Replicate state

e These approaches imply requirements on
the application and on the middleware



Goals for LAM/MPI Reliability
-

e Use a stateless programming model: today

e Assist application in reconstructing state: RSN
e Periodically save state (checkpoint): fall

e Replicate state

e Need to be cognizant of what approach the
application is able / willing to use



Goals for LAM/MPI Reliability
-

e Ensure stability of MPI layer and LAM RTE In
the presence of failures

Detect failures and notify MPI application
Provide status information to MPI programs
Recover from transient failures

User codes remain portable
— Can compile/link to other MPI implementations*
— ...but will not utilize reliability extensions

e Provide library for reliable MPI operations




Existing Fault Tolerance in LAM

e Trollius layer can detect failure of a remote
node

e Minimal recovery ability from node failure
- Node is removed from LAM universe
- Running MPI application is terminated




Existing Fault Tolerance in LAM

e Trollius layer can detect failure of a remote
node

e Minimal recovery ability from node failure
- Node is removed from LAM universe
- Running MPI application is terminated



Existing Fault Tolerance in LAM

e Trollius layer can detect failure of a remote
node

e Minimal recovery ability from node failure
- Node is removed from LAM universe

- Running MPI application is terminated
- Next mpirun recognizes smaller universe




Infrastructure Faillure Detection

e Detects failures during normal communication

e Uses “ping” messages to test data links that
have not been used recently

e |f out-of-band channel is broken between two
nodes, remote node considered dead

e Daemons are fully connected (UDP); each
individually notice when one goes down



MPI Communicators and Faults
7

e MPI communicators are static environments
- A fixed set of MPI processes

— If a process in a communicator dies, many MPI
operations become undefined (e.g., collectives)




Surviving a Process Failure
.

e Possible implement a program that can
survive failures during a MPI job
- Use MPI_COMM_WORLD size of one
- Use MPI_COMM_SPAWN to launch worker jobs
- Pair-wise communicators
- Spawned processes can die and rest will continue

e Limited solution — must be carefully written
with MPI-2 dynamic process control

e Example included with LAM/MPI distribution



Process Failure Example
-

e % ./manager

MPI_COMM_WORLD

Manager




Process Failure Example
-

e % ./manager

MPI_COMM_WORLD

M anager

Worker " s EEEGE Worker




Process Failure Example
-

e % ./manager

MPI_COMM_WORLD

M aster

Worker HE E E E B ©®




Process Failure Example
-

e % ./manager

MPI_COMM_WORLD

M aster

Worker HE E E E B ©®




Process Failure Example
-

e % ./manager

MPI_COMM_WORLD

M aster

Worker HE E E E B ©®




Current Work
N

e Improve infrastructure for fault detection
- More reliable detection of faults
- LAM RTE behaves correctly in presence of faults

e Implement scheme for node to be notified of
another node’s failure

e Audit code for proper behavior of LAM
(especially MPI layer) in presence of faults

e Reliability library



Current Work
N

e Asynchronous MPI notification of process failure

e Define behavior of MPI layer in presence of
faults

e Complete code audit and testing of LAM
e Consider potential recovery from transient failure
e Model of integration into an application



Infrastructure Fault
Detection Improvements

e Improve current “least recently used”
algorithm for fault detection by introducing
topology-based testing

e Allow nodes to notify neighbor nodes of a
detected fault, reducing time spent waiting
for an NACK from a dead node

e Improve handling of data structures once a
node is dead (in order to allow recovery later)



Infrastructure Fault
Detection Improvements (cont.)

e Mpirun needs updating to perform consistently
In presence of faults

— Currently, mpirun may hang if fault occurs before
local lamd notices

- mpirun’s behavior depends on when failure occurs

e Two separate conditions: before and after all processes
finish MP1_INIT

e Allow user to specify whether to continue or abort

e Other LAM utilities must be tested as well



Interacting with the Application
.

e Detecting a fault useless unless we notify the
MPI programs about the fault

e Asynchronous notification ideal — something
similar to a signal handler

e Options:

- Use MPI attribute on MPI_COMM_WORLD to
register a callback function for faults

- Add a LAM-specific function to register a callback
function



Application Programming Model

e Pair-wise communicators

- When one process dies, can discard all
communicators that it is in

— All other processes still have healthy
communicators

foo

foo A foo




Application Programming Model
-

e Pair-wise communicators

- When one process dies, can discard all
communicators that it is in

— All other processes still have healthy
communicators




Application Programming Model
-

e Pair-wise communicators

- When one process dies, can discard all
communicators that it is in

— All other processes still have healthy
communicators

foo foo



Application State
-

e Application can maintain N-way
communicators

e On failure, contents of wounded
communicator are used to make new one

e Requires COMM_FREE, COMM_SPLIT to
work with wounded communicator



Is Anybody Out There?
.

n order to properly recover from a fault, a
orocess must know who is still alive

Possible ways to implement data retrieval:

- Special attribute on MPI_COMM_WORLD that
will return list of processes who are still alive

- Special attribute on MPI_COMM_WORLD that
will return list of processes who died

- Additional, non-portable, function calls to obtain
the lists of information



Is Anybody Out There? (cont.)
.

e Using attributes:
- MPI-portable

— A well-written program can still compile and run
under other MPI implementations

e Using LAM-specific functions

- Could be portable with #if statements, and
therefore equivalent to attributes

—- Compile-time decision vs. run-time decision



MPI and Faults
7

e Nothing said about fault tolerance in the MPI
standard
— Deliberate choice — hard to define

- Behavior of all MPI functions and objects must be
specified Iin order to ensure programs work “as
expected” In presence of faults

e Goal: Specification for fault tolerance in LAM
will still comply with MPI standard

e Exact semantics and functionality still being
researched



MPI Point-to-Point Operations
.

e Point-to-point operations involving a “down”
process must fail
- LAM will be able to continue correctly
— WIll gracefully fail and return an error

e Point-to-point operations to healthy
processes in a “wounded” communicator will
succeed



Collective Operations
.

e Collectives on a communicator involving a
“dead” process cannot succeed

— Fall the entire collective

- Possible for unexpected success with a failure

e If a process completes its part in a collective operation
and then fails, it is possible that not everyone will have
finished the collective yet

e The collective will still finish correctly

e Lots of bookkeeping when using a pair-wise
communicator model



Reliability Library
-

e Absorb the burden of programming model

e Construct and maintain the pair-wise
communicators

— Give the illusion of communicators with many
members

- Perform the bookkeeping necessary for collective
operations

— Re-form wounded communicators when a
process fails



Reliability Library

e Sits between user program and MPI library




Checkpoint/Restart
-

e Joint project with LBNL

e LBNL implementing kernel-level checkpoint
restart for single processes

e Integrating with LAM/MPI to checkpoint
LAM/MPI jobs

e Transparent to user
e Prototype planned for end of summer



Conclusions

e Several approaches to reliability (state recovery)
e Application and middleware interact accordingly
e LAM/MPI

Supports some reliability modes
Infrastructure improvements in progress
MPI layer improvements being studied
Checkpoint/restart under development
Reliability library under development

e Applications welcome!



